Laboratory Acoustical Test Report

FC23-0762

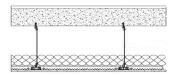
Impact Insulation Class and Sound Transmission Class

ASTM E492, E90

August 11, 2023

Test Assembly:

Urban Surfaces Studio 12 Luxury Vinyl Plank Flooring
Urban Surfaces Floor Silencer Flex Underlayment
6-inch 5000 PSI Concrete Slab
Armstrong HD8906 Drywall Main Beam
Armstrong XL8945P Cross Tee
Johns Manville Unfaced R-13 Fiberglass Insulation
National Gypsum Gold Bond Fire-Shield® Type X Gypsum Panel


IIC-66 HIIC-76 LIIC-67 STC-59

URBAN SURFACES

1121 Olympic Drive Corona, California 92881

Impact Insulation Class Test FC23-0762: IIC 66

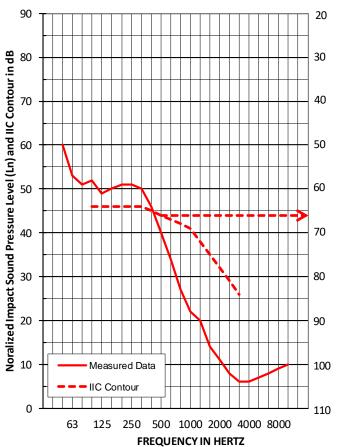
Finish Flooring Underlayment Concrete Slab Drywall Main Beam Cross Tee

Fiberglass Insulation Gypsum Panel 5 mm Urban Surfaces Studio 12 Luxury Vinyl Plank

1.4 mm Urban Surfaces Floor Silencer Flex

152.4 mm 5000 PSI Concrete Slab

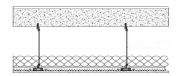
43 mm Armstrong HD8906 Drywall Main Beam


37.3 mm Armstrong XL8945P Cross Tee

88.9 mm Johns Manville Unfaced R-13 Fiberglass Insulation

15.9 mm National Gypsum Gold Bond Fire-Shield® Type X Gypsum Panel

Test Date: May 9, 2023 Construction Date: May 9, 2023


Test Specimen Area: 11 sq.m. Receiving Room Volume: 156 cu.m. 18.2-18.2 Receiving RoomTemperature: degrees C Receiving Room Relative Humidity: 71-71 percent

	95%	
	Confidence	
Freq	Limit	Ln
50	2.7	60
63	2.2	53
80	2.1	51
100	1.3	52
125	0.9	49
160	0.6	50
200	0.5	51
250	0.5	51
315	0.8	50
400	0.8	46
500	0.3	40
630	0.5	34
800	0.4	<u>27</u>
1000	0.3	<u>22</u>
1250	0.3	<u>20</u>
1600	0.2	<u>14</u>
2000	0.2	<u>11</u>
2500	0.2	<u>8</u>
3150	0.2	<u>6</u>
4000	0.2	<u>6</u>
5000	0.2	<u>7</u>
6300	0.2	<u>8</u>
8000	0.3	<u>9</u>
10000	0.3	<u>10</u>

High-frequency Impact Insulation Class Test FC23-0762: HIIC 76

Finish Flooring Underlayment Drywall Main Beam

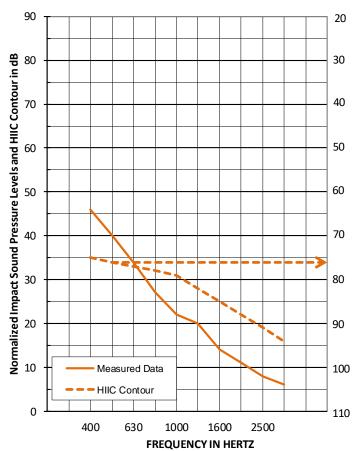
Concrete Slab Cross Tee

Fiberglass Insulation Gypsum Panel 5 mm Urban Surfaces Studio 12 Luxury Vinyl Plank

1.4 mm Urban Surfaces Floor Silencer Flex

152.4 mm 5000 PSI Concrete Slab

43 mm Armstrong HD8906 Drywall Main Beam

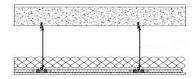

37.3 mm Armstrong XL8945P Cross Tee

88.9 mm Johns Manville Unfaced R-13 Fiberglass Insulation

15.9 mm National Gypsum Gold Bond Fire-Shield® Type X Gypsum Panel

Test Date: May 9, 2023 Construction Date: May 9, 2023

11 Test Specimen Area: sq.m. 156 Receiving Room Volume: cu.m. Receiving RoomTemperature: 18.2-18.2 degrees C Receiving Room Relative Humidity: 71-71 percent



Ī		95%	
		Confidence	
	Freq	Limit	Ln
	400	0.8	46
	500	0.3	40
	630	0.5	34
	800	0.4	<u>27</u>
	1000	0.3	<u>22</u>
	1250	0.3	<u>20</u>
	1600	0.2	<u>14</u>
	2000	0.2	<u>11</u>
	2500	0.2	<u>8</u>
	3150	0.2	<u>6</u>

Background Affected

Sound Transmission Class Test FC23-0762: STC 59

Finish Flooring Underlayment Concrete Slab Drywall Main Beam 5 mm Urban Surfaces Studio 12 Luxury Vinyl Plank 1.4 mm Urban Surfaces Floor Silencer Flex 152.4 mm 5000 PSI Concrete Slab

b 152.4 mm n 43 mm A

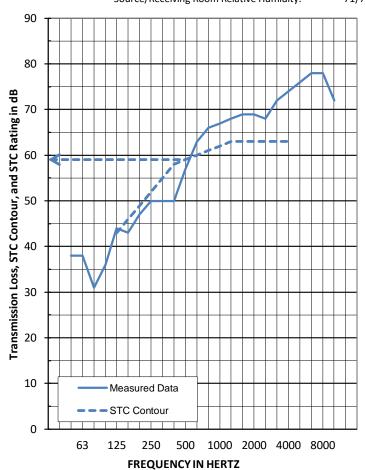
43 mm Armstrong HD8906 Drywall Main Beam

Cross Tee 37.3 mm Armstrong XL8945P Cross Tee

Fiberglass Insulation 88.9 mm Johns Manville Unfaced R-13 Fiberglass Insulation

Gypsum Panel | 15.9 mm National Gypsum Gold Bond Fire-Shield® Type X Gypsum Panel

sq.m.


cu.m.

degrees C

percent

Test Date: May 9, 2023
Construction Date: May 9, 2023
Test Specimen Area: 11

Source/Receiving Room Volume: 190/156
Source/Receiving Room Temperature: 18.2/19.8
Source/Receiving Room Relative Humidity: 71/71

Freq	TL
50	38
63	38
80	31
100	36
125	44
160	43
200	47
250	50
315	50
400	50
500	57
630	63
800	66
1000	67
1250	68
1600	69
2000	69
2500	68
3150	72
4000	74
5000	76
6300	<u>78</u>
8000	<u>78</u>
10000	<u>72</u>

Background Affected
Flanking Affected

Background and Flanking Affected

1.0 TEST PROCEDURES

1.1 Impact Insulation Tests

All tests were conducted in accordance with ASTM E492, "Standard Test Method for Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine." The IIC is a single-number rating derived from the Impact Sound Pressure Level in accordance with ASTM E989, "Standard Classification for Determination of Impact Insulation Class (IIC)." Results are presented above.

95% confidence intervals represent uncertainty for microphone averaging, not tapping positions.

1.2 High-frequency Impact Insulation Class Tests

The HIIC is the High-frequency Impact Insulation Class and is meant to assess the high-frequency impact noise on a floor-ceiling assembly. The higher the value, the better the floor, meaning less noise from high-frequency impacts in the space below.

All tests were conducted in accordance with the requirements of ASTM E492, "Standard Test Method for Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine," using ASTM E3222 "Standard Classification for Determination of High-frequency Impact Sound Ratings" to calculate the High-frequency Impact Insulation Class (HIIC). Results are presented above.

1.3 Low-frequency Impact Insulation Class Tests

The LIIC is the Low-frequency Impact Insulation Class and is meant to assess the low-frequency impact noise on a floor-ceiling assembly. The higher the value, the better the floor, meaning less noise from low-frequency impacts in the space below.

All tests were conducted in accordance with the requirements of ASTM E492, "Standard Test Method for Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine," using ASTM E3207 "Standard Classification for Determination of Low-frequency Impact Noise Ratings" to calculate the Low-frequency Impact Insulation Class (LIIC).

Measured result is LIIC-67.

1.4 Transmission Loss Tests

All tests were conducted in accordance with ASTM E90, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions," using the single-direction method. STC is a single-number rating derived from measured values of Sound Transmission Loss through a test specimen in accordance with ASTM E413, "Classification for Rating Sound Insulation." Results are presented above.

2.0 TEST ASSEMBLY

2.1 Assembly Description

The test assembly consists of:

- 5 mm Urban Surfaces Studio 12 Luxury Vinyl Plank;
- 1.4 mm Urban Surfaces Floor Silencer Flex Underlayment
- 152.4 mm 5000 PSI Concrete Slab;
- 43 mm Armstrong HD8906 Drywall Main Beam
- 37.3 mm Armstrong XL8945P Cross Tee
- 88.9 mm Johns Manville Unfaced R-13 Fiberglass Insulation.
- 15.9 mm National Gypsum Gold Bond Fire-Shield® Type X Gypsum Panel

Total mass of the floor-ceiling assembly was 4269.1 kg, having an area density of 388.57kg/m²). This represents the entire area, which was separated into quadrants for the test.

Product/Element	Thickness	Dimensions	Area	Area Density
Urban Surfaces Studio 12 Luxury Vinyl Plank	5 mm	1219.2 mm x 177.8 mm	10.98 m ²	8.51 kg/m ²
Urban Surfaces Floor Silencer Flex	1.4 mm	1828.8 mm x 3048 mm	10.98 m ²	0.43 kg/m ²
5000 PSI Concrete Slab	152.4 mm	3023 mm x 3632 mm	10.98 m ²	366.18kg/m ²
Armstrong HD8906 Drywall Main Beam	43 mm	38.1 mm x 2870 mm	10.9 lin m	0.45 kg/m
Armstrong XL8945P Cross Tee	37.3 mm	38.3 mm x 1219 mm	27.2 lin m	0.45 kg/m
Johns Manville Unfaced R-13 Fiberglass Insulation	88.9 mm	609.6 mm x 2438 mm	10.98 m ²	1.32 kg/m ²
National Gypsum Gold Bond Fire-Shield® Type X Gypsum Panel	15.9 mm	3023 mm x 1219 mm	10.56 m²	11.23 kg/m²

2.2 Installation

The materials were installed in the following manner:

- Finish flooring: Loose laid.
- Underlayment: Loose laid.
- Concrete slab: Installed in a test frame flush to the source room. Mats of #5 reinforcing bars were placed 25.4 mm from both the top and bottom of the slab, with bars spaced on 305 mm centers in both directions. The test frame was isolated from the structure with a dense neoprene gasket. This slab was an existing assembly, reused. No noticeable shrinkage or cracking was visible.
- Drywall Main Beam: Twelve-gauge hanger wires were attached to the bottom side of the concrete at twelve locations and then to the main beams. The hanger wire was twisted around itself a minimum of three times within 76 mm creating a 305 mm plenum. The measured steel thickness was 0.5 mm.
- Cross Tee: Inserted into the main beams on 610 mm centers. The measured steel thickness was 0.5.
- Fiberglass Insulation: Loose laid onto the ceiling grid system.
- Gypsum Panel: Fastened with 25.4 mm fine thread drywall screws on 305 mm centers. Seams and perimeter sealed with Pecora AC-20® Acoustical Sealant and covered with pressure-sensitive tape.

The assembly was constructed on May 9, 2023.

3.0 TESTING PROTOCOL

This report summarizes laboratory acoustical testing contracted by Veneklasen to be completed for URBAN SURFACES on Urban Surfaces Studio 12 Luxury Vinyl Plank over Urban Surfaces Floor Silencer Flex Underlayment and Concrete slab. The scope of the acoustical testing is for Impact Insulation Class (IIC), Low-frequency Impact Insulation Class (LIIC), High-frequency Impact Insulation Class (HIIC), and Sound Transmission Class (STC), in accordance with ASTM standards E492, E90.

The tests were conducted on May 9, 2023. Details of the tests are contained in this report. Testing was completed in strict accordance with the following standards:

- ASTM E90, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions"
- ASTM E413, "Classification for Rating Sound Insulation"
- ASTM E492, "Standard Test Method for Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine"
- ASTM E989, "Standard Classification for Determination of Impact Insulation Class (IIC)"
- ASTM E1332, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions"
- ASTM E2235, "Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods"
- ASTM E3207, "Standard Classification for Determination of Low-frequency Impact Noise Ratings."
- ASTM E3222, "Standard Classification for Determination of High-frequency Impact Sound Ratings."

3.1 Equipment

Equipment list and information associated with this test, including calibration information, is included in the Appendix.

3.2 Accreditation and Reporting

Report must be distributed in its entirety except with written authorization from Veneklasen Associates. Test was conducted at IAS-accredited test facility; the full report is available upon request. Detailed test procedures, data for flanking limit tests, repeatability measurements, and reference specimen tests are available on request.

Veneklasen Associates provides no warranties, expressed or implied, regarding the structural integrity or fitness of these assemblies for a specific installation. Any advertising which utilizes this test report or test data must not imply product certification or endorsement by Veneklasen Associates, NVLAP, NIST or the U.S. Government.

Sincerely,

Veneklasen Associates, Inc.

John LoVerde, FASA Principal

APPENDIX

Test Equipment and Photos

INSTRUMENT	MANUFACTURER	MODEL	DESCRIPTION	ASSET #	CAL DATE	
2-Channel Analog Input	National Instruments	NI 9250	2-Channel Analog Input	INT02572	06/22	*
2-Channel Analog Input	National Instruments	NI 9250	2-Channel Analog Input	INT02574	06/22	*
2-Channel Analog Input	National Instruments	NI 9250	2-Channel Analog Input	INT02575	06/22	*
2-Channel Analog Input	National Instruments	NI 9250	2-Channel Analog Input	INT02576	06/22	*
2-Channel Analog Input	National Instruments	NI 9250	2-Channel Analog Input	INT02577	06/22	*
2-Channel Analog Input	National Instruments	NI 9250	2-Channel Analog Input	INT02578	06/22	*
2-Channel Analog Output	National Instruments	NI 9260	2-Channel Analog Output	INT02611	N/A	*
Microphone Calibrator	Norsonic	34093	Acoustical Calibrator	65105	10/22	
Receive Room Microphone	PCB Piezotronics	378C20	Microphone and Preamplifier	63741	06/22	
Receive Room Microphone	PCB Piezotronics	378B20	Microphone and Preamplifier	INT02910	02/23	
Receive Room Microphone	PCB Piezotronics	378B20	Microphone and Preamplifier	INT02911	02/23	
Receive Room Microphone	PCB Piezotronics	378B20	Microphone and Preamplifier	63747	06/22	
Receive Room Microphone	PCB Piezotronics	378B20	Microphone and Preamplifier	63745	08/22	
Receive Room Environmental			Temperature and Humidity	63812	10/22	
Indicator	Comet	T7510	Transmitter	63811	10/22	
Source Room Microphone	PCB Piezotronics	378C20	Microphone and Preamplifier	65586	06/22	
Source Room Microphone	PCB Piezotronics	378C20	Microphone and Preamplifier	65617	08/22	
Source Room Microphone	PCB Piezotronics	378C20	Microphone and Preamplifier	65103	02/23	
Source Room Microphone	PCB Piezotronics	378C20	Microphone and Preamplifier	63742	02/23	
Source Room Microphone	PCB Electronics	378C20	Microphone and Preamplifier	INT01089	02/23	
Source Room Environmental			Temperature and Humidity			
Indicator	Comet	T7510	Transmitter	63810	10/22	
Tapping Machine	Norsonic	Nor277	Tapping Machine	2776111	04/23	

^{*} The calibration frequency for this equipment is every two years per the manufacturer's recommendation.

VT RECEIVE ROOM VOLUME	159 m³
VT SOURCE ROOM VOLUME	190 m³

Photo 1: View of Source Chamber, finish flooring installation observed

Photo 2: View of Receive Chamber, bottom of concrete slab observed