Laboratory Acoustical Test Report

FC22-0549R1
Impact Insulation Class and Sound Transmission Class
ASTM E492, E90
February 8, 2023

Test Assembly:

SPC Urban Surfaces SoundTec SPC Flooring Urban Surfaces FloorSilencer Boost
5000 PSI Concrete Slab

IIC-54
HIIC-72
LIIC-70
$\triangle I I C-24$
\triangle HIIC-41
STC-53

1121 Olympic Drive
Corona, California 92881

Impact Insulation Class Test FC22-0549: IIC 54

Finish Flooring Acoustical Fiberboard Assembly Type

6 mm Urban Surfaces SoundTec SPC Flooring 6 mm Urban Surfaces FloorSilencer Boost 152.4 mm 5000 PSI Concrete Slab

Finish Flooring	6 mm Urban Surfaces SoundTec SPC Acoustical Fiberboard Flooring 6 mm Urban Surfaces FloorSilencer Assembly Type
Boost 152.4 mm 5000 PSI Concrete Slab	

Test Date: September 17, 2022
Construction Date: September 17, 2022
Test Specimen Area: 11 sq.m.
Receiving Room Volume: 156 cu.m.
Receiving RoomTemperature: Receiving Room Relative Humidity:
22.1-22.1 62-63

degrees C percent

Finish Flooring	6 mm Urban Surfaces SoundTec SPC Alooring 6 mm Urban Surfaces FloorSilencer
Ascoustical Fiberboard	Flombly Type

Test Date: September 17, 2022					
Construction Date: September 17, 2022					
Test Specimen Area:			11		sq.m.
Receiving Room Volume:			156		cu.m.
Recei	ng RoomTe	perature:	22.1-2	22.1	degrees C
Receiving Room Relative Humidity:			62-63		percent
Freq	Third-Octave Band Sound Pressure Level				
	Bare Concrete	Floor Tested	Difference Reference in dB Floor		Final
					Array
100	56.5	54.7	1.8	67.0	65.2
125	58.3	57.4	0.9	67.5	66.6
160	62.1	61.6	0.5	68.0	67.5
200	66.5	65.7	0.8	68.5	67.7
250	66.0	59.6	6.4	69.0	62.6
315	67.4	53.1	14.3	69.5	55.2
400	68.1	49.2	18.9	70.0	51.1
500	67.9	42.6	25.3	70.5	45.2
630	68.8	39.7	29.1	71.0	41.9
800	70.8	35.3	35.5	71.5	36.0
1000	71.7	31.0	40.7	72.0	31.3
1250	71.6	27.5	44.1	72.0	27.9
1600	71.6	25.0	46.6	72.0	25.4
2000	71.2	21.3	49.9	72.0	22.1
2500	71.1	18.1	53.0	72.0	19.0
3150	70.3	14.6	55.7	72.0	16.3
No receiving levels were affected by background noise.					

Calculated Improvement in Impact Insulation Class: Δ IIC 24

Finish Flooring 6 mm Urban Surfaces SoundTec SPC Acoustical Fiberboard
 Assembly Type Flooring 6 mm Urban Surfaces FloorSilencer Boost 152.4 mm 5000 PSI Concrete Slab

Calculated Improvement in High-frequency Impact Insulation Class: $\mathbf{\Delta H I I C} 41$

Sound Transmission Class Test FC22-0549: STC 53

1.0 TEST PROCEDURES

1.1 Impact Insulation Tests

All tests were conducted in accordance with ASTM E492, "Standard Test Method for Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine." The IIC is a single-number rating derived from the Impact Sound Pressure Level in accordance with ASTM E989, "Standard Classification for Determination of Impact Insulation Class (IIC)." Results are presented above.

95\% confidence intervals represent uncertainty for microphone averaging, not tapping positions.

1.2 High-frequency Impact Insulation Class Tests

The HIIC is the High-frequency Impact Insulation Class and is meant to assess the high-frequency impact noise on a floor-ceiling assembly. The higher the value, the better the floor, meaning less noise from high-frequency impacts in the space below.

All tests were conducted in accordance with the requirements of ASTM E492, "Standard Test Method for Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine," using ASTM E3222 "Standard Classification for Determination of High-frequency Impact Sound Ratings" to calculate the High-frequency Impact Insulation Class (HIIC). Results are presented above.

1.3 Low-frequency Impact Insulation Class Tests

The LIIC is the Low-frequency Impact Insulation Class and is meant to assess the low-frequency impact noise on a floor-ceiling assembly. The higher the value, the better the floor, meaning less noise from low-frequency impacts in the space below.

All tests were conducted in accordance with the requirements of ASTM E492, "Standard Test Method for Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine," using ASTM E3207 "Standard Classification for Determination of Low-frequency Impact Noise Ratings" to calculate the Low-frequency Impact Insulation Class (LIIC).

Measured result is LIIC-70.

1.4 Delta Impact Insulation Class Tests

All tests were conducted in accordance with ASTM E2179, "Standard Test Method for Laboratory Measurement of the Effectiveness of Floor Coverings in Reducing Impact Sound Transmission through Concrete Floors." The Delta Impact Insulation Class ($\Delta I I C$) describes the effectiveness of floor coverings in reducing impact noise from a standard tapping machine. The test is conducted exclusively using concrete subfloor assemblies. Averaging time used during measurement of sound pressure levels was 18 seconds. Results are presented above.

1.5 High-frequency Delta Impact Insulation Class Tests

The $\Delta \mathrm{HIIC}$ is the High-frequency Delta Impact Insulation Class and is meant to describe the effectiveness of floor coverings in reducing impact noise from a standard tapping machine within the high-frequency range per ASTM E3222. The higher the value, the more effective the floor covering at reducing high-frequency impact sounds.

All tests were conducted in accordance with ASTM E2179, "Standard Test Method for Laboratory Measurement of the Effectiveness of Floor Coverings in Reducing Impact Sound Transmission through

Concrete Floors," using ASTM E3222 "Standard Classification for Determination of High-frequency Impact Sound Ratings." Averaging time used during measurement of sound pressure levels was 18 seconds. Results are presented above.

1.6 Transmission Loss Tests

All tests were conducted in accordance with ASTM E90, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions," using the single-direction method. STC is a single-number rating derived from measured values of Sound Transmission Loss through a test specimen in accordance with ASTM E413, "Classification for Rating Sound Insulation." Results are presented above.

2.0 TEST ASSEMBLY

2.1 Assembly Description

The test assembly consists of:

- Urban Surfaces SoundTec SPC Flooring, Finish Flooring;
- Urban Surfaces FloorSilencer Boost, Acoustical Fiberboard;
- 5000 PSI Concrete Slab, Concrete Slab;

Total mass of the floor-ceiling assembly was 4152.1 kg , having an area density of $378.15 \mathrm{~kg} / \mathrm{m}^{2}$).

Product/Element	Thickness	Dimensions	Area	Area Density
Urban Surfaces SoundTec	6 mm	$1219 \mathrm{~mm} \times 178 \mathrm{~mm}$	$10.98 \mathrm{~m}^{2}$	$9.41 \mathrm{~kg} / \mathrm{m}^{2}$
Urban Surfaces FloorSilencer Boost	6 mm	$908 \mathrm{~mm} \times 597 \mathrm{~mm}$	$10.98 \mathrm{~m}^{2}$	$2.56 \mathrm{~kg} / \mathrm{m}^{2}$
Concrete Slab	152.4 mm	$3023 \mathrm{~mm} \times 3632 \mathrm{~mm}$	$10.98 \mathrm{~m}^{2}$	$366.18 \mathrm{~kg} / \mathrm{m}^{2}$

2.2 Installation

The materials were installed in the following manner:

- Urban Surfaces SoundTec SPC Flooring: Loose laid
- Acoustical Fiberboard: Loose laid
- Concrete Slab: Installed in a test frame flush to the source room. Mats of \#5 reinforcing bars were placed 25.4 mm from both the top and bottom of the slab, with bars spaced on 305 mm centers in both directions. No noticeable shrinkage or cracking was visible on the specimen.

The assembly was constructed on September 17, 2022.

3.0 TESTING PROTOCOL

This report summarizes laboratory acoustical testing contracted by Veneklasen to be completed for URBAN SURFACES on 6.0 mm Urban Surfaces SoundTec SPC Flooring over 6.0 mm Urban Surfaces FloorSilencer Boost Acoustical Fiberboard. The scope of the acoustical testing is for Impact Insulation Class (IIC), Highfrequency Impact Insulation Class (HIIC), Low-frequency Impact Insulation Class (LIIC), Delta Impact Insulation Class ($\Delta \mathrm{IIC}$), Delta High-frequency Impact Insulation Class ($\Delta \mathrm{HIIC}$), and Sound Transmission Class (STC), in accordance with ASTM standards E492, E90.

The tests were conducted on September 17, 2022. Details of the tests are contained in this report. Testing was completed in strict accordance with the following standards:

- ASTM E90, "Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions"
- ASTM E413, "Classification for Rating Sound Insulation"
- ASTM E492, "Standard Test Method for Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine"
- ASTM E989, "Standard Classification for Determination of Impact Insulation Class (IIC)"
- ASTM E2235, "Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods"
- ASTM E2179, "Standard Test Method for Laboratory Measurement of the Effectiveness of Floor Coverings in Reducing Impact Sound Transmission through Concrete Floors"
- ASTM E3207, "Standard Classification for Determination of Low-frequency Impact Noise Ratings."
- ASTM E3222, "Standard Classification for Determination of High-frequency Impact Sound Ratings."

3.1 Equipment

Equipment list and information associated with this test, including calibration information, is included in the Appendix.

3.2 Accreditation and Reporting

Report must be distributed in its entirety except with written authorization from Veneklasen Associates. Test was conducted at IAS-accredited test facility; the full report is available upon request. Detailed test procedures, data for flanking limit tests, repeatability measurements, and reference specimen tests are available on request.

Veneklasen Associates provides no warranties, expressed or implied, regarding the structural integrity or fitness of these assemblies for a specific installation. Any advertising which utilizes this test report or test data must not imply product certification or endorsement by Veneklasen Associates, NVLAP, NIST or the U.S. Government.

Sincerely,
Veneklasen Associates, Inc.

John LoVerde, FASA
Principal

APPENDIX

Test Equipment and Photos

Photo 1: View of Source Chamber, Urban Surfaces SoundTec SPC finish flooring installation observed

Photo 2: View of Receive Chamber, bottom of ceiling observed

